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 Abstract - There is a growing demand for marine resource 

development. Bionic amphibious robots can replace humans to 

conduct land and underwater exploration, which has important 

research significance. Deep learning has developed rapidly in 

recent years, and many kinds of target detection algorithms have 

emerged. We select one two-stage target detection algorithm 

Faster R-CNN, three single-stage target detection algorithms 

SSD, Centernet, and YOLOv7. We use each of these four 

algorithms to train the VOC2007 dataset in a deep learning 

environment. After the training is completed, these four models 

are evaluated and predicted separately.  We find an algorithm 

that is most suitable for the amphibious robot application—

YOLOv7. Finally, we use the YOLOv7 model to detect the 

underwater dataset, and the results prove that the model is 

promising for detecting small underwater targets. 

Index Terms – Amphibious robots, YOLOv7, SSD, Centernet, 

Faster R-CNN. 

I.  INTRODUCTION 

 At present, there has been an increasing demand for 

marine resource exploration, search and rescue at sea. As a 

new type of key industrial equipment, amphibious robots have 

obvious advantages in terms of motion mobility performance, 

manufacturing and maintenance costs, etc. Amphibious robots 

can adapt to land, underwater and land-water transition 

environments[1-2]. Amphibious robots have a very wide range 

of application scenarios. Robot vision is a crucial aspect of 

robot, which determines whether the robot can judge the 

surrounding environment well and recognize objects in the 

environment[3]. In addition, target tracking is also a crucial 

aspect of robotics. Traditional target detection algorithms rely 

on delicate manual feature design and extraction, and the 

accuracy is somewhat limited, which is poor for the detection 

of small amphibious robots and the recognition of complex 

environments[4-5]. There are many researchers working on 

bionic amphibious robots and underwater robots[6-9]. 

            
(a) AmphiBot[10]                                (b) Whegs[11] 

Fig. 1. Amphibious robot 

             

        

Fig. 2. Basic framework of image target tracking algorithm[12]. Video or 
image sequences,  Target initialization, Motion prediction and candidate 

sample collection, Target feature extraction, Statistical modeling and updating 

of target features, Target tracking results. 

With the advent of the era of deep learning, target 

detection algorithms based on deep learning are more accurate 

and faster than traditional algorithms, and gradually come into 

the public eye[13]. With the gradual development of hardware 

systems such as equipment, the technology has become more 

and more mature, and the problems faced by deep learning, 

such as unusually large amount of data and long training time, 

have been effectively solved, and the target detection and 

recognition technology based on deep learning has developed 

rapidly. This paper focuses on the current mainstream deep 

learning-based target detection algorithms, and aims to screen 

out a target detection algorithm suitable for amphibious robots 

for robot target identification and tracking.  

The rest of the paper is structured as follows. Section II 

introduces single- and two-stage target detection algorithms 

based on deep learning. Section III describes the algorithm 

environment construction and dataset construction. Section IV 

performs comparison and selection of target detection 

algorithms. Section V describes YOLOv7 detection of 

underwater datasets. Section VI describes the conclusion and 

future work. 

II.  OBJECT DETECTION ALGORITHM BASED ON DEEP LEARNING 

Deep learning target detection algorithms are classified 

into single-stage target detection and two-stage target 

detection algorithms. 

A. Two-stage target detection algorithm 



 The two-stage target detection algorithm is a "coarse-to-

fine" process, in which the algorithm generates target 

candidate frames in the first stage and performs category 

classification and border regression on the candidate frames in 

the second stage. R-CNN (region-based convolutional neural 

network) [14] is a typical two-stage algorithm, in addition, 

there are also improved versions such as Fast R-CNN , Faster 

R-CNN [15] networks, etc. The Faster R-CNN network uses a 

convolutional layer to extract image features; the RPN 

network extracts candidate regions based on the input image 

features; uses an ROI (Region of Interest) pooling layer to 

transform to a fixed-length output; and finally, classification is 

performed using a classification regression layer. All tasks of 

this approach are under a single deep learning framework, 

with substantially faster computation and higher accuracy.    

 

Fig. 3. Network structure of Faster R-CNN[15] 

B. One-stage target detection algorithm 

 The single-stage target detection algorithm is different 

from the two-stage target detection algorithm, which does not 

require the stage region recommendation and directly 

generates the category probability and location coordinate 

values of the object. After single-stage detection, the final 

detection results are obtained directly available and therefore 

have a faster detection speed.  

The YOLO (You Only Look Once) [16] algorithm was 

proposed by Redmon et al in 2015. The input image requires 

only one network computation to directly obtain the target 

bounding box and category probability in the image. The 

YOLO family of algorithms is an advanced one-stage target 

detection algorithm framework that has been successfully 

applied to machine vision tasks such as traffic , medical, and 

industrial inspection. The YOLO is under continuous 

optimization and has now evolved to YOLO v7. 

 
Fig. 4. Network structure of YOLO 

The SSD (Single Shot MultiBox Detector) [17] algorithm 

was improved by Liu et al. on YOLOv1. The detection 

accuracy and detection speed are greatly improved with 

respect to YOLOv1. The core of SSD is the use of a small 

convolutional filter applied to the feature map to predict the 

class scores and box offsets for a fixed set of default bounding 

boxes. These design features result in simple end-to-end 

training and high accuracy. Speed and accuracy are improved 

even on low-resolution input images. 

 
Fig. 5. Network structure of SSD 

Centernet [18] is an anchor-free target detection network 

that models the centroid of an object bounding box, uses 

keypoint estimation to find the centroid, and regresses to all 

other object properties, such as size, 3D position. The network 

obtains center heatmap and corner heatmaps by center pooling 

and cascade corner pooling respectively, which are used to 

predict the location of keypoints. After getting the positions 

and classes of corner points, the positions of the corner points 

are mapped to the corresponding positions of the input image 

by offsets, and then the embedings are used to determine 

which two corner points belong to the same object in order to 

form a detection frame. 

 

Fig.6. Network structure of Centernet 

III.  ALGORITHM ENVIRONMENT CONSTRUCTION AND DATA SET 

CONSTRUCTION 

In this paper, we use Windows 11 operating system, the 

programming environment is virtual environment python=3.9, 

the deep learning framework is pytorch2.0.0, the NVIDIA 

GPU acceleration platform is cu117, and the GPU hardware is 

NVIDIA RTX3060 (12G). 

A. Introduction of important dependency libraries 

The important dependencies used in the implementation 

of the algorithm are shown in Table I. 

TABLE I 

DEPENDENCY LIBRARY LIST 

Dependency Libraries Version 
Numpy 1.24.1 

Matplotlib 3.7.1 

Opencv 4.7.0.72 

Scipy 1.10.1 

Torch 2.0.0+cu117 

Tensorboard 2.12.0 

Torchvision 0.15.1+cu117 

Numpy is a library of extensions for Python, mainly for 

efficient operations on arrays and matrices[19]. Numpy also 

serves as the basis for many other libraries and can be used 



with a large number of extensions. Today's most popular 

Tensorflow and Pytorch frameworks also use Numpy to 

process data, so it is indispensable in today's scientific 

computing, especially in the field of machine learning. 

Matplotlib is a python library for drawing graphs and 

charts[20]. It can be used with the Numpy library to get icons 

similar to those in MatLab. In this project, we use Matplotlib 

to plot loss function drop, AP, F1, MAP, etc. 

Opencv is an open source computer vision library[21]. 

Through Opencv we can easily read images, transform, save 

and other operations. It contains a variety of image processing 

algorithms interface, can be used with the Numpy library. thus 

making the processing of images easier. In this project, we use 

Opencv to read and pre-process images. 

Scipy is a library of algorithms for a wide range of 

mathematical calculations and engineering applications[22]. It 

has a variety of built-in functions for solving ordinary 

differential equations, performing interpolation and integration 

operations. It can be used together with Numpy matrices to 

improve computational efficiency.  

B. Dataset construction 

Image information is rich in content, and the target is 

clear, which can improve the resolution, so it is often used for 

target recognition. We start by collecting images or videos of 

the target and organizing them into a dataset. General images 

or videos can be captured in water by underwater vehicles or 

fixed camera equipment, or they can be collected via the 

Internet. We first use the public dataset VOC2007[23] to 

predict. 

Annotations holds the annotation information of the 

images. Main is the list of datasets for target detection, and 

JPEGImages holds the original images. 

IV.  OBJECT DETECTION ALGORITHM SCREENING AND 

IMPLEMENTATION 

In this paper, four deep learning-based target detection 

networks are built using the pytorch deep learning framework. 

They are respectively: two-stage target detection network 

faster-rcnn, single-stage target detection network SSD, 

CenterNet, and YOLOv7. These four target detection 

algorithms are used to train the VOC2007 dataset separately, 

and the training and validation sets are divided in the ratio of 

9:1. 

A. Evaluation indicators 

Evaluation indicators for target detection usually use 

Precision, Recall, F1 score (F1), Average Precision (AP), 

Mean Average Precision (mAP), etc. 
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TP refers to true positive, TN refers to true negative, FP 

refers to false positive, FN refers to false negative. 

B. Faster R-CNN Training and Evaluation 

The Faster R-CNN model uses the Adam optimizer and 

sets the maximum learning rate to 1e-4. The learning rate is 

decreased by "cos", and the weights are kept in the "logs" file 

once every 5 training epochs. The total number of training 

epochs is 100. In order to speed up the training and to prevent 

the network weights from being destroyed at the beginning of 

the training, 50 rounds of training are frozen first and the next 

50 epochs are unfrozen. During the training process, the mAP 

of the validation set is evaluated every 5 epochs, and the 

appropriate batch_size is selected according to the complexity 

of the network structure, the memory consumption and the 

training phase. 

When training the Faster R-CNN model, the batch_size 

for the freeze training phase is set to 8 and the batch_size for 

the unfreeze training phase is set to 4. 

C. SSD Training and Evaluation 

SSD adopts VGG16 as the base network. The core design 

concepts of SSD are: 1. Using multi-scale feature maps for 

prediction to improve the accuracy of recognition. 2. Drawing 

on the anchor concept in Faster R-CNN, each unit sets Default 

boxes with different scales or aspect ratios, and the predicted 

bounding boxes are based on these Default boxes. This 

reduces the training difficulty to a certain extent. 3. 

Convolution is directly used to extract detection results for 

different feature maps. 

The SSD model uses the SGD optimizer and sets the 

maximum learning rate to 2e-3. The weights decay to 5e-4 to 

prevent overfitting. The learning rate decreases by "cos" and 

the weights are kept in the "logs" file every 10 training rounds. 

The total number of training rounds is 200. In order to speed 

up the training and prevent the network weights from being 

destroyed at the beginning of the training, 50 rounds of 

training are frozen first, and then 150 rounds are unfrozen. 

During the training process, the mAP of the validation set is 

evaluated every 10 rounds, and the appropriate batch_size is 

selected according to the complexity of the network structure, 

the amount of memory used, and the training phase. 

The batch_size for the freeze training phase is set to 128 

and the batch_size for the unfreeze training phase is set to 64. 

D. Centernet Training and Evaluation 

The Centernet model uses the Adam optimizer and sets 

the maximum learning rate to 5e-4. The learning rate is 

decreased by "cos". The weights are kept in the "logs" file 

every 5 training rounds. The total number of training rounds is 

100. In order to speed up the training and prevent the network 

weights from being destroyed, at the beginning of the training, 



50 rounds of training are frozen and the next 50 rounds are 

unfrozen. During the training process, the mAP of the 

validation set is evaluated every 5 rounds, and the appropriate 

batch_size is selected according to the complexity of the 

network structure, the memory consumption and the training 

phase.  

The batch_size for the freeze training phase is set to 64 

and the batch_size for the unfreeze training phase is set to 32. 

E. YOLOv7 Training and Evaluation 

YOLOv7 is currently the most advanced algorithm in the 

YOLO series, surpassing the previous YOLO series in terms 

of accuracy and speed.  

The YOLOv7 model uses the SGD optimizer, sets the 

maximum learning rate to 1e-2. To prevent overfitting, sets the 

weights to decay to 5e-4. The learning rate decreases by "cos" 

and keeps the weights in "logs" every 10 training rounds. The 

total number of training rounds is 300. In order to speed up the 

training and prevent the network weights from being 

destroyed at the beginning of the training, 50 rounds of 

training are frozen first, and then 250 rounds are unfrozen. 

During the training process, the mAP of the validation set is 

evaluated every 10 rounds, and the appropriate batch_size is 

selected according to the complexity of the network structure, 

the amount of memory used, and the stage of training. 

The batch_size for the freeze training phase is set to 16 

and the batch_size for the unfreeze training phase is set to 8. 

 

 
Fig.7. mAP of Faster R-CNN 

 
Fig.8. Prediction results of  Faster R-CNN 

 
Fig.9. mAP of SSD 

 

Fig.10. Prediction results of  SSD 

 
Fig.11. mAP of Centernet 
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Fig.12. Prediction results of  Centernet 



 
Fig.13. mAP  of  YOLOv7 

 

Fig.14. Prediction results of  YOLOv7 

F. Comparison of the results of each model 

TABLE II 

AP COMPARISON BY MODEL 

AP(%) aeroplane bicycle bird 

YOLOv7 97.67 96.85 94.62 

SSD 81.52 86.83 77.11 

FasterRCNN 81.42 88.59 79.66 

Centernet 85.84 84.91 77.87 

TABLE III 
F1 COMPARISON BY MODEL(SCORE_THREHOLD=0.5) 

F1 aeroplane bicycle bird 

YOLOv7 0.95 0.95 0.90 

SSD 0.80 0.83 0.77 

FasterRCNN 0.64 0.78 0.71 

Centernet 0.76 0.73 0.63 

TABLE IV 

PRECISION COMPARISON BY MODEL 

PRECISION(%) aeroplane bicycle bird 

YOLOv7 98.15 97.21 93.19 

SSD 85.32 86.93 87.19 

FasterRCNN 51.27 69.11 62.56 

Centernet 98.88 98.01 95.96 

TABLE V 

RECALL COMPARISON BY MODEL 

RECALL(%) aeroplane bicycle bird 

YOLOv7 92.98 93.18 86.49 

SSD 75.44 78.93 68.19 

FasterRCNN 84.91 89.61 80.83 

Centernet 61.75 58.46 46.84 

The mAP value of YOLOv7 is 93.46, which is the 

highest. 

The indicators results of the four models for the detection 

of the VOC2007 dataset are shown in Table II-V. We have 

chosen three categories to compare:  aeroplane, bicycle, bird. 

The above tables show that the precision of YOLOv7 

algorithm is slightly worse than Centernet, but the other 

parameters are better than SSD, Centernet, Faster R-CNN. 

G. Algorithm Comparison Analysis 

Since Faster R-CNN is a two-stage detection algorithm, it 

is more accurate, but the detection speed is very slow and not 

suitable for real-time detection. Therefore, we need to choose 

a single-stage detection algorithm. SSD fuses the features of 

different convolutional layers, thus achieving multi-scale 

target detection, so it is better for small target detection. 

CenterNet is an anchor-free target detection network, which is 

more advantageous in terms of speed and accuracy. In 

YOLOv7 a training method of auxiliary head is proposed, 

with the main purpose of improving the accuracy by 

increasing the training cost without affecting the inference 

time, since the auxiliary head will only appear during the 

training process. E-ELAN is used on the backbone network 

instead of the original CSPDarknet53, and the SPP module is 

redesigned. In the head part, YOLOv7 adds RepConv, which 

has 3 branches for 1×1, 3×3 convolution and BN during 

training, and the convolution and BN of the 3 branches can be 

equivalently fused to form a 3×3 convolution of VGG 

structure during model deployment, thus speeding up the 

model inference. 

When YOLO makes a prediction, it reasons about the 

image in a comprehensive way. During training and testing, 

the entire image is seen, and YOLO has half the number of 

background false positives than R-CNN. 

After analyzing the structure and principles of the four 

algorithms, we found that YOLOv7 can meet our usage 

requirements in terms of accuracy and precision. YOLOv7 is 

also the most suitable algorithm for bionic amphibian robot 

application scenarios, and performs better in natural 

environments where amphibian robots work, such as: mud 

flats, underwater, etc. 

V.  YOLOV7 DETECTION OF UNDERWATER DATASETS 

  We selected an algorithmic network suitable for target 

detection: YOLOv7, and we next employ this model to detect 

the underwater dataset and observe the detection effect. 

  The underwater target dataset was adopted from a real 

collection of underwater target images provided by Dalian 

University of Technology in the underwater target detection 

algorithm competition (optical image competition). The 

detection objects in the dataset are mainly economic seafood 

in real waters. The shooting time was 8:00-11:00 a.m. and 

1:00-4:00 p.m. The shooting depth was between 0.5 and 8 

meters due to tidal variations in the sea. Due to the variation of 

water depth and shooting time, the background of the sea 

water showed three shades of blue, green and blue-green. 



There is no inter-frame continuity between these images. Four 

types of targets are detected in the dataset: holothurian, 

echinus, scallop, and starfish. We use this underwater dataset 

to train the model and make predictions. Figure 15-16 shows 

the prediction results. 

 

Fig.15. Underwater image prediction results 

 

Fig.16. Underwater image prediction results 

VI.  cONCLUSION AND FUTURE WORK 

The purpose of this paper is to find a suitable algorithm 

for target detection and recognition of a bionic amphibious 

robot. We have selected four currently dominant algorithms: 

Faster R-CNN, SSD, Centernet, YOLOv7. We use these 

algorithms to train public dataset VOC, and get the predict 

results. Then we use some indicators to evaluate the results of 

each model. Finally we find a most suitable algorithm for the 

amphibious robot—YOLOv7.  In the next step, We  shoot and 

build our own land and underwater datasets to train the yolov7 

model. Then try to use it for the vision system of a bionic 

amphibious robot. After the detection work is completed, we 

will perform multi-objective tracking to supervise and predict 

the robot's motion trajectory. In addition, we will seek a 

suitable method to integrate the target detection and multi-

target tracking system into the bionic amphibious robot to 

achieve the purpose of real-time detection and tracking of the 

target of the bionic amphibious robot. 
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